Some Remarks on Derivations in Semiprime Rings and Standard Operator Algebras

نویسندگان

  • Joso Vukman
  • J. VUKMAN
چکیده

In this paper identities related to derivations on semiprime rings and standard operator algebras are investigated. We prove the following result which generalizes a classical result of Chernoff. Let X be a real or complex Banach space, let L(X) be the algebra of all bounded linear operators of X into itself and let A(X) ⊆ L(X) be a standard operator algebra. Suppose there exists a linear mapping D : A(X) → L(X) satisfying the relation 2D(A3) = D(A2)A+A2D(A) +D(A)A2 +AD(A2) for all A ∈ A(X). In this case D is of the form D(A) = AB − BA for all A ∈ A(X) and some fixed B ∈ L(X), which means that D is a linear derivation. This research has been motivated by the work of Brešar ([3]) and Chernoff ([4]) and it is a continuation of our recent work ([11–13]). Throughout, R will represent an associative ring with center Z(R). As usual we write [x, y] for xy − yx. Given an integer n ≥ 2, a ring R is said to be n−torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R is prime if for a, b ∈ R, aRb = (0) implies a = 0 or b = 0, and semiprime in case aRa = (0) implies a = 0. Let A be an algebra over the real or complex field and let B be a subalgebra of A. A linear mapping D : B → A is called a linear derivation in case D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R. In case we have a ring R an additive mapping D : R → R is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R and is called a Jordan derivation in case D(x) = D(x)x + xD(x) is fulfilled for all x ∈ R. A derivation D is inner in case there exists a ∈ R such that D(x) = [x, a] holds for all x ∈ R. Every derivation is a Jordan derivation. The converse is in 2010 Mathematics Subject Classification. 16W10, 46K15, 39B05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivations in semiprime rings and Banach algebras

Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...

متن کامل

Characterization of $delta$-double derivations on rings and algebras

The main purpose of this article is to offer some characterizations of $delta$-double derivations on rings and algebras. To reach this goal, we prove the following theorem:Let $n > 1$ be an integer and let $mathcal{R}$ be an $n!$-torsion free ring with the identity element $1$. Suppose that there exist two additive mappings $d,delta:Rto R$ such that $$d(x^n) =Sigma^n_{j=1} x^{n-j}d(x)x^{j-1}+Si...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Lie Ideals and Generalized Derivations in Semiprime Rings

Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.

متن کامل

A note on a pair of derivations of semiprime rings

We study certain properties of derivations on semiprime rings. The main purpose is to prove the following result: let R be a semiprime ring with center Z(R), and let f , g be derivations of R such that f(x)x+xg(x) ∈ Z(R) for all x ∈ R, then f and g are central. As an application, we show that noncommutative semisimple Banach algebras do not admit nonzero linear derivations satisfying the above ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011